If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2-72n=0
a = 2; b = -72; c = 0;
Δ = b2-4ac
Δ = -722-4·2·0
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-72}{2*2}=\frac{0}{4} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+72}{2*2}=\frac{144}{4} =36 $
| (2x+3)(x+1)=1 | | 3x-29=5x+1 | | (2x-5)^2-9=0 | | 5a-7/2a=31-1 | | х*х+(1-2i)х-2i=0 | | 2x-6=36+x | | -3x^2-6x+3=3 | | 4x^-3x-10=0 | | 9(x^2)+441=-(x^2)+4x+21 | | 2x-9=39-7x | | -3x^2-6x+3=6 | | -3x-6x+3=6 | | 256=2^n | | 0,2y=1 | | 2xX3x=1296 | | 3(2x-5)(x-4)=0 | | 6+5x=x3 | | 9x/10x+40=0.75 | | 7(5x-6)=4 | | 2x+(x+7/3)=4x-19/5 | | 9x/50x=0.75 | | 6(x-1)-5(3x+4)=8(x-3) | | x+x+10+x+4=4x | | 2x+x+7/3=4x-19/5 | | x-7x=-13 | | 10(z-4)+2z=80 | | F(-1/3)=6x-18 | | 12^2+6x-6=0 | | 2(6-y)=3(2y+13) | | -6x=-23 | | 83x+7x=10x+120 | | B=(1x+2) |